首页> 外文OA文献 >Hidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials
【2h】

Hidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials

机译:金刚石,硅,锗,镓中隐藏的轨道极化   砷化物和分层材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It was previously believed that the Bloch electronic states of non-magneticmaterials with inversion symmetry cannot have finite spin polarizations.However, since the seminal work by Zhang et al. [Nat. Phys. 10, 387-393 (2014)]on local spin polarizations of Bloch states in non-magnetic, centrosymmetricmaterials, the scope of spintronics has been significantly broadened. Here, weshow, using a framework that is universally applicable independent of whetherhidden spin polarizations are small (e.g., diamond, Si, Ge, and GaAs) or large(e.g., MoS2 and WSe2), that the corresponding quantity arising from orbital -instead of spin - degrees of freedom, the hidden orbital polarization, is (i)much more abundant in nature since it exists even without spin-orbit couplingand (ii) more fundamental since the interband matrix elements of thesite-dependent orbital angular momentum operator determines the hidden spinpolarization. We predict that the hidden spin polarization of transition metaldichalcogenides is reduced significantly upon compression. We suggestexperimental signatures of hidden orbital polarization from photoemissionspectroscopies and demonstrate that the current-induced hidden orbitalpolarization may play a far more important role than its spin counterpart inantiferromagnetic information technology by calculating the current-drivenantiferromagnetism in compressed silicon.
机译:以前认为具有反对称性的非磁性材料的布洛赫电子态不能具有有限的自旋极化。 [Nat。物理10,387-393(2014)]关于非磁性,中心对称材料中Bloch态的局部自旋极化,自旋电子学的范围已大大拓宽。在这里,我们显示了一个与隐藏的自旋极化是小的(例如,金刚石,Si,Ge和GaAs)还是大的(例如,MoS2和WSe2)无关的普遍适用的框架,相应的量是由轨道而不是自旋自由度,即隐藏的轨道极化,(i)本质上更加丰富,因为它甚至在没有自旋轨道耦合的情况下也存在,并且(ii)更基本,因为取决于位置的轨道角动量算符的带间矩阵元素决定了隐藏自旋极化。我们预测,压缩后过渡金属卤化物的隐藏自旋极化将显着降低。我们建议从光发射光谱学中获得隐藏轨道极化的实验特征,并证明通过计算压缩硅中的电流驱动反铁磁性,电流诱导的隐藏轨道极化可能比自旋对应的反铁磁信息技术起更重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号